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Abstract. Theq-deformedN = 2 SUSY algebra is obtained for aslq (n|n)-covariantq-boson
andq-fermion system and the Hamiltonian forq-bosons andq-fermions is constructed.

1. Introduction

Lie algebra enables us to describe physical systems. Its elegant applications were found in
quantum mechanics within the concept of spectrum-generating algebras. The most famous
example is given by the harmonic oscillator problem where the spectrum is generated by the
Heisenberg–Weyl algebra. Some time ago much attention was drawn to the deformation of
Lie algebras which are called quantum algebras or quantum groups [1, 2].

Quantum groups orq-deformed Lie algebra imply some specific deformations of classical
Lie algebras. From a mathematical point of view, it is a non-commutative associative Hopf
algebra. The structure and representation theory of quantum groups have been developed
extensively by Jimbo [1] and Drinfeld [2].

Biedenharn [3] and Macfarlane [4] introducedq-deformed harmonic oscillator algebras
which are sometimes called theq-boson algebra. After this was done, theq-deformation of
an ordinary fermion algebra was obtained [5].

Since theN = 2 SUSY algebra for ordinary (undeformed) bosons and ordinary fermions
was constructed by Witten [6], theq-deformedN = 2 SUSY algebra [7, 8] has been constructed
by using theq-deformation of boson (or fermion) algebra. Most ofq-deformedN = 2 SUSY
algebra was obtained by assuming that the (q-deformed) bosons and (q-deformed) fermions
are mutually independent, which implies that their step operators are mutually commuting.
However, if we consider the idea of aq-superplane [9–11] withslq(n|n) covariance, the
above-mentioned assumption is improper for correctq-deformation ofN = 2 SUSY forq-
deformed bosons andq-deformed fermions. In theq-superplane, the bosonic coordinate (x)
and fermionic coordinate (θ ) are not mutually commuting but they obey theq-commutation
relation

xθ = √qθx
with the nilpotency of a fermionic coordinate.

The idea of aq-superplane enables us to construct the multimodeq-oscillator system
which is covariant under some quantum groups. The first work about the orthosymplectic
invariance for the undeformed supersymmetric phase variables was accomplished by
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Casabuoni [12]. The system ofn q-bosons covariant underUq(n) was first presented by
Pusz and Woronowicz [13] and the system ofn q-bosons andm q-fermions by Chaichianet al
[14].

In this paper, we introduce theq-deformed boson–fermion covariance which hasslq(n|n)
covariance and construct theq-deformedN = 2 SUSY algebra withslq(n|n) covariance.

2. q-SUSY with slq(1|1) covariance

Before dealing with the generalslq(n|n) case, let us consider then = 1 case in this section,
which implies the system of oneq-boson and oneq-fermion among which there existsslq(1|1)
covariance.

If we impose theslq(1|1) covariance for a single-modeq-boson andq-fermion, the algebra
is given by

af = √qf a f †a† = √qa†f †

af † = √qf †a f a† = √qa†f f 2 = (f †)2 = 0

aa† = 1 +qa†a

ff † = 1− f †f + (q − 1)a†a

(1)

where we have assumed thatq is real and positive. Here,f † (orf ) is a creation (or annihilation)
operator for aq-fermion anda† (ora) is a creation (or annihilation) operator for aq-boson. The
first, second and third relations of equation (1) show that the step operators for theq-fermion
andq-boson are not mutually independent butq-commutative. The fourth relation shows that
these systems still obeys the Pauli exclusion principle. The fifth relation is the well known
single-modeq-boson algebra. The sixth relation is more or less unknown to us, but the last
term is indispensable forslq(1|1) invariance of the algebra (1).

It can easily be shown that the algebra given in equation (1) remains invariant under the
slq(1|1) transformation(

a′

f ′

)
=
(

A β

−(A∗)−1β∗(A∗)−1 (A∗)−1

)(
a

f

)
( (a†)′ (f †)′ ) = ( a† f † )

(
A∗ −A−1βA−1

β∗ A−1

) (2)

where the 2× 2 matrix is a quantum super-matrix forslq(1|1) algebra and its entries obey the
following commutation relation:

Aβ = √qβA A∗β
1√
q
βA∗

ββ∗ + qβ∗β = 0 β2 = (β∗)2 = 0

AA∗ − A ∗ A = (q − 1)β∗β
AA∗ + ββ∗ = 1.

(3)

Here∗ implies complex conjugation and it is assumed that(A,A∗) commute with(a, a†)

and(f, f †), and(β, β∗) commute with(a, a†) and anticommute with(f, f †).
The commutation relation betweena andf is given by the followingR-matrix forslq(1|1):(

a

f

)
⊗
(
a

f

)
= R̂

(
a

f

)
⊗
(
a

f

)
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where

R̂ =


1 0 0 0
0 1− q−1 q−1/2 0

0 q−1/2 0 0

0 0 0 −1

 (4)

is theR-matrix for slq(1|1). It is well known that theR-matrix for slq(1|1) satisfies the
Yang–Baxter equation

R̂12R̂23R̂12 = R̂23R̂12R̂23 (5)

which implies the associativity andslq(1|1)-covariance of the algebra (1).
Then, there exist two types of supercharges as follows:

Q = 1√
q
a†f Q† = 1√

q
f †a (6)

where the nilpotency off andf † gives the nilpotency ofq-supercharges

Q2 = (Q†)2 = 0. (7)

Now we construct theq-SUSY quantum mechanics for this system. Before doing this,
we introduce number operators for this system. LetN andM be number operators for bosons
andq-fermions, respectively. We then have the following relations:

[N, a†] = a† [N, a] = −a
[M,f †] = f † [M,f ] = −f (8)

where the relation betweenN anda (a†) is given by

[N ] = a†a (9)

or

N =
∞∑
k=1

(1− q)k
(1− qk) (a

†)kak. (10)

Here theq-number [x] is defined as

[x] = qx − 1

q − 1
.

Similarly, the relation between theq-fermion number operator andq-fermion step operators
are given by

f †f = qNM (11)

or

M = f †f q−N. (12)

If we use the nilpotency of theq-fermion step operators, we have [M] = M, so we have
the following relation:

a†a + f †f = [N +M]. (13)

If we introduce the Fock basis|nm〉 for N andM as follows:

N |n,m〉 = n|n,m〉
M|n,m〉 = m|n,m〉. (n = 0, 1, 2, . . . , m = 0, 1) (14)
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The matrix representation ofa, a†, f † andf are given by

a|n,m〉 =
√

[n]|n− 1, m〉
a†|n,m〉 =

√
[n + 1]|n + 1, m〉

f †|n, 1〉 = 0 f †|n, 0〉 = qn|n, 1〉
f |n, 0〉 = 0 f |n, 1〉 = qn|n, 0〉.

(15)

Equation (5) implies that there exists a ground state|0, 0〉 killed by botha andf and that
any excited states can be obtained by applying the raising operators successively to the ground
states.

Using the Fock representation, theq-SUSY algebra becomes

{Q,Q†}q = H
[Q,H ]q = [H,Q†]q = 0

Q2 = (Q†)2 = 0

(16)

where the HamiltonianH is given by

H = q−1a†a + q−1(q − 1)(a†a)2 + q−2f †f. (17)

Hereq-brackets are defined as follows:

[X, Y ]q = qXY − q−1YX

{X, Y }q = qXY + q−1YX.

It is worth noting that theq-analogue ofN = 2 SUSY algebra given in equation (16) is
the same as that introduced by Spiridonov [7]. Some of its physical application is given in [7].

This Hamiltonian has two quadratic terms corresponding to theq-bosons andq-fermions
which implies the kinetic terms for this system. The second term of the Hamiltonian (17) is
more or less unknown to us, but it comes about because ofq-deformed SUSY algebra.

Acting the supercharges on the Fock basis of number operators, we have

Q|n, 0〉 = 0 Q|n, 1〉 = qn/2
√

[n + 1]|n + 1,↓〉
Q†|n, 1〉 = 0 Q†|n, 0〉 = qn/2

√
[n]|n− 1,↑〉.

(18)

The energy eigenvalues for this Hamiltonian become

H |n, 1〉 = qn[n + 1]|n, 1〉
H |n, 0〉 = qn+1[n]|n, 0〉. (19)

Thus, the relation between the Hamiltonian and number operators are given by

H = qN(q[N ] + [M]). (20)

3. q-SUSY with slq(n|n) covariance

Let us consider the generaln case in this section, which implies the system ofn q-bosons and
n q-fermions among which there existsslq(n|n) covariance.
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If we impose theslq(n|n) covariance forn q-bosons andn q-fermions, the algebra is given
by

aiaj = q1/2ajai (i < j)

aia
†
j = q−1/2a

†
j ai (i < j)

aia
†
j = q1/2a

†
j ai (i 6= j)

aia
†
i = 1 +qa†

i ai + (q − 1)
i−1∑
k=1

a
†
kak

aifj = √qfjai f
†
j a

†
i =
√
qa

†
i f

†
j

aif
†
j =
√
qf

†
j ai fja

†
i =
√
qa

†
i fj

fifj = −√qfjfi (i < j)

f
†
i f

†
j = −q−1/2f

†
j f

†
i (i < j)

fif
†
j = −

√
qf

†
j fi (i 6= j)

fif
†
i + f †

i fi = 1 + (q − 1)

( n∑
k=1

a
†
i ai +

i−1∑
k=1

f
†
k fk

)
f 2
k = (f †

k )
2 = 0.

(21)

It can be easily checked that the algebra (21) is covariant under theslq(n|n) transformation of
the step operators ofq-bosons andq-fermions.

Then, there exist 2n types of supercharges as follows:

Qi = 1√
q
a

†
i fi Q

†
i =

1√
q
f

†
i ai (22)

where the nilpotency offi andf †
i gives the nilpotency of supercharges

Q2
i = (Q†

i )
2 = 0. (23)

If we introduce the Fock basis|n,m〉 for Ni andMi as follows:

Ni |n,m〉 = ni |n,m〉
Mi |n,m〉 = mi |n,m〉

(ni = 0, 1, 2, . . . , mi = 0, 1) (24)

the matrix representation ofai, a
†
i , fi andf †

i is given by

ai |n,m〉 =
√
q
∑i−1

k=1 nk [ni ]|n− ei ,m〉

a
†
i |n,m〉 =

√
q
∑i−1

k=1 nk [ni + 1]|n + ei ,m〉

fi |n,m〉 =
{

0 (mi = 0)

q
1
2

∑n
k=1 nk (−q1/2)

∑i−1
k=1mkmi |n,m− pi〉 (mi = 1)

f
†
i |n,m〉 =

{
q

1
2

∑n
k=1 nk (−q1/2)

∑i−1
k=1mk (1−mi)|n,m + pi〉 (mi = 0)

0 (mi = 1)

(25)

where we have used the following abbreviations:

|n,m〉 = |n1, . . . , nn,m1, . . . , mn〉
|n± ei ,m〉 = |n1, . . . , ni−1, ni ± 1, ni+1, . . . , nn,m1, . . . , mn〉
|n,m± pi〉 = |n1, . . . , nn,m1, . . . , mi−1, mi ± 1, mi+1, . . . , mn〉.
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Now we construct theN = 2 q-SUSY algebra for this system. Theq-SUSY algebra with
slq(n|n) covariance is given by

{Qi,Qj } = 0

{Qi,Qj }q = Hi
{Qi,Q

†
j }√q = 0 (i < j)

[Qi,Hi ]q = 0

[Qj,Hi ]√q (i 6= j)

(26)

where the sub-HamiltoniansHi are given by

Hi = q−1a
†
i ai + q−2f

†
i fi + q(q − 1)a†

i ai

( n∑
k=1

a
†
kak + q−2

i−1∑
k=1

f
†
k fk

)

+q−2(q − 1)f †
i fi

i−1∑
k=1

a
†
kak. (27)

These sub-Hamiltonians have two quadratic terms corresponding to twoq-bosons and
two q-fermions which imply the kinetic terms for this system. The remaining terms of the
sub-Hamiltonians (27) are more or less unknown to us, but they come about because of the
q-deformed SUSY algebra.

4. Conclusion

In this paper I have studied theq-deformed SUSY forq-bosons andq-fermions among which
there existsslq(n|n) covariance. In particular, I have discussed then = 1 case more explicitly.
In contrast to the earlier deformation ofN = 2 SUSY, theq-bosons andq-fermions are not
independent butq-commutative in this model, which results from the fact that this system
consisting ofq-bosons andq-fermions possessesslq(n|n) covariance. Using theq-deformed
N = 2 SUSY withslq(n|n) covariance, I have discussed the Hamiltonian for these (strange)
particles.
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