q-deformed SUSY algebra for a $s l_{q}(n \mid n)$-covariant q-boson and q-fermion system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 322605
(http://iopscience.iop.org/0305-4470/32/14/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:28

Please note that terms and conditions apply.

q-deformed SUSY algebra for a $s l_{q}(n \mid n)$-covariant q-boson and q-fermion system

W-S Chung
Department of Physics and Research Institute of Natural Science, Gyeongsang National University, Jinju, 660-701, Korea

Received 30 June 1998, in final form 4 September 1998

Abstract

The q-deformed $N=2$ SUSY algebra is obtained for a $s l_{q}(n \mid n)$-covariant q-boson and q-fermion system and the Hamiltonian for q-bosons and q-fermions is constructed.

1. Introduction

Lie algebra enables us to describe physical systems. Its elegant applications were found in quantum mechanics within the concept of spectrum-generating algebras. The most famous example is given by the harmonic oscillator problem where the spectrum is generated by the Heisenberg-Weyl algebra. Some time ago much attention was drawn to the deformation of Lie algebras which are called quantum algebras or quantum groups [1,2].

Quantum groups or q-deformed Lie algebra imply some specific deformations of classical Lie algebras. From a mathematical point of view, it is a non-commutative associative Hopf algebra. The structure and representation theory of quantum groups have been developed extensively by Jimbo [1] and Drinfeld [2].

Biedenharn [3] and Macfarlane [4] introduced q-deformed harmonic oscillator algebras which are sometimes called the q-boson algebra. After this was done, the q-deformation of an ordinary fermion algebra was obtained [5].

Since the $N=2$ SUSY algebra for ordinary (undeformed) bosons and ordinary fermions was constructed by Witten [6], the q-deformed $N=2$ SUSY algebra [7, 8] has been constructed by using the q-deformation of boson (or fermion) algebra. Most of q-deformed $N=2$ SUSY algebra was obtained by assuming that the (q-deformed) bosons and (q-deformed) fermions are mutually independent, which implies that their step operators are mutually commuting. However, if we consider the idea of a q-superplane [9-11] with $s l_{q}(n \mid n)$ covariance, the above-mentioned assumption is improper for correct q-deformation of $N=2$ SUSY for q deformed bosons and q-deformed fermions. In the q-superplane, the bosonic coordinate (x) and fermionic coordinate (θ) are not mutually commuting but they obey the q-commutation relation

$$
x \theta=\sqrt{q} \theta x
$$

with the nilpotency of a fermionic coordinate.
The idea of a q-superplane enables us to construct the multimode q-oscillator system which is covariant under some quantum groups. The first work about the orthosymplectic invariance for the undeformed supersymmetric phase variables was accomplished by

Casabuoni [12]. The system of $n q$-bosons covariant under $U_{q}(n)$ was first presented by Pusz and Woronowicz [13] and the system of $n q$-bosons and $m q$-fermions by Chaichian et al [14].

In this paper, we introduce the q-deformed boson-fermion covariance which has $s l_{q}(n \mid n)$ covariance and construct the q-deformed $N=2$ SUSY algebra with $s l_{q}(n \mid n)$ covariance.

2. q-SUSY with $s l_{q}(\mathbf{1} \mid \mathbf{1})$ covariance

Before dealing with the general $s l_{q}(n \mid n)$ case, let us consider the $n=1$ case in this section, which implies the system of one q-boson and one q-fermion among which there exists $s l_{q}(1 \mid 1)$ covariance.

If we impose the $s l_{q}(1 \mid 1)$ covariance for a single-mode q-boson and q-fermion, the algebra is given by

$$
\begin{array}{ll}
a f=\sqrt{q} f a & f^{\dagger} a^{\dagger}=\sqrt{q} a^{\dagger} f^{\dagger} \\
a f^{\dagger}=\sqrt{q} f^{\dagger} a & f a^{\dagger}=\sqrt{q} a^{\dagger} f \quad f^{2}=\left(f^{\dagger}\right)^{2}=0 \\
a a^{\dagger}=1+q a^{\dagger} a & \tag{1}\\
f f^{\dagger}=1-f^{\dagger} f+(q-1) a^{\dagger} a
\end{array}
$$

where we have assumed that q is real and positive. Here, $f^{\dagger}($ or $f)$ is a creation (or annihilation) operator for a q-fermion and a^{\dagger} (or a) is a creation (or annihilation) operator for a q-boson. The first, second and third relations of equation (1) show that the step operators for the q-fermion and q-boson are not mutually independent but q-commutative. The fourth relation shows that these systems still obeys the Pauli exclusion principle. The fifth relation is the well known single-mode q-boson algebra. The sixth relation is more or less unknown to us, but the last term is indispensable for $s l_{q}(1 \mid 1)$ invariance of the algebra (1).

It can easily be shown that the algebra given in equation (1) remains invariant under the $s l_{q}(1 \mid 1)$ transformation

$$
\begin{align*}
& \binom{a^{\prime}}{f^{\prime}}=\left(\begin{array}{cc}
A & \beta \\
-\left(A^{*}\right)^{-1} \beta^{*}\left(A^{*}\right)^{-1} & \left(A^{*}\right)^{-1}
\end{array}\right)\binom{a}{f} \tag{2}\\
& \left(\begin{array}{ll}
\left(a^{\dagger}\right)^{\prime} & \left.\left(f^{\dagger}\right)^{\prime}\right)=\left(\begin{array}{ll}
a^{\dagger} & f^{\dagger}
\end{array}\right)\left(\begin{array}{cc}
A^{*} & -A^{-1} \beta A^{-1} \\
\beta^{*} & A^{-1}
\end{array}\right)
\end{array}, . \begin{array}{l}
\end{array}\right)
\end{align*}
$$

where the 2×2 matrix is a quantum super-matrix for $s l_{q}(1 \mid 1)$ algebra and its entries obey the following commutation relation:

$$
\begin{align*}
& A \beta=\sqrt{q} \beta A \quad A^{*} \beta \frac{1}{\sqrt{q}} \beta A^{*} \\
& \beta \beta^{*}+q \beta^{*} \beta=0 \quad \beta^{2}=\left(\beta^{*}\right)^{2}=0 \tag{3}\\
& A A^{*}-A * A=(q-1) \beta^{*} \beta \\
& A A^{*}+\beta \beta^{*}=1 .
\end{align*}
$$

Here $*$ implies complex conjugation and it is assumed that $\left(A, A^{*}\right)$ commute with (a, a^{\dagger}) and $\left(f, f^{\dagger}\right)$, and $\left(\beta, \beta^{*}\right)$ commute with (a, a^{\dagger}) and anticommute with $\left(f, f^{\dagger}\right)$.

The commutation relation between a and f is given by the following R-matrix for $s l_{q}(1 \mid 1)$:

$$
\binom{a}{f} \otimes\binom{a}{f}=\hat{R}\binom{a}{f} \otimes\binom{a}{f}
$$

where

$$
\hat{R}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{4}\\
0 & 1-q^{-1} & q^{-1 / 2} & 0 \\
0 & q^{-1 / 2} & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

is the R-matrix for $s l_{q}(1 \mid 1)$. It is well known that the R-matrix for $s l_{q}(1 \mid 1)$ satisfies the Yang-Baxter equation

$$
\begin{equation*}
\hat{R}_{12} \hat{R}_{23} \hat{R}_{12}=\hat{R}_{23} \hat{R}_{12} \hat{R}_{23} \tag{5}
\end{equation*}
$$

which implies the associativity and $s l_{q}(1 \mid 1)$-covariance of the algebra (1).
Then, there exist two types of supercharges as follows:

$$
\begin{equation*}
Q=\frac{1}{\sqrt{q}} a^{\dagger} f \quad Q^{\dagger}=\frac{1}{\sqrt{q}} f^{\dagger} a \tag{6}
\end{equation*}
$$

where the nilpotency of f and f^{\dagger} gives the nilpotency of q-supercharges

$$
\begin{equation*}
Q^{2}=\left(Q^{\dagger}\right)^{2}=0 \tag{7}
\end{equation*}
$$

Now we construct the q-SUSY quantum mechanics for this system. Before doing this, we introduce number operators for this system. Let N and M be number operators for bosons and q-fermions, respectively. We then have the following relations:

$$
\begin{array}{ll}
{\left[N, a^{\dagger}\right]=a^{\dagger}} & {[N, a]=-a} \\
{\left[M, f^{\dagger}\right]=f^{\dagger}} & {[M, f]=-f} \tag{8}
\end{array}
$$

where the relation between N and $a\left(a^{\dagger}\right)$ is given by

$$
\begin{equation*}
[N]=a^{\dagger} a \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
N=\sum_{k=1}^{\infty} \frac{(1-q)^{k}}{\left(1-q^{k}\right)}\left(a^{\dagger}\right)^{k} a^{k} \tag{10}
\end{equation*}
$$

Here the q-number $[x]$ is defined as

$$
[x]=\frac{q^{x}-1}{q-1}
$$

Similarly, the relation between the q-fermion number operator and q-fermion step operators are given by

$$
\begin{equation*}
f^{\dagger} f=q^{N} M \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
M=f^{\dagger} f q^{-N} \tag{12}
\end{equation*}
$$

If we use the nilpotency of the q-fermion step operators, we have $[M]=M$, so we have the following relation:

$$
\begin{equation*}
a^{\dagger} a+f^{\dagger} f=[N+M] \tag{13}
\end{equation*}
$$

If we introduce the Fock basis $|n m\rangle$ for N and M as follows:

$$
\begin{align*}
& N|n, m\rangle=n|n, m\rangle \\
& M|n, m\rangle=m|n, m\rangle . \quad(n=0,1,2, \ldots, m=0,1) \tag{14}
\end{align*}
$$

The matrix representation of $a, a^{\dagger}, f^{\dagger}$ and f are given by

$$
\begin{align*}
& a|n, m\rangle=\sqrt{[n]}|n-1, m\rangle \\
& a^{\dagger}|n, m\rangle=\sqrt{[n+1]}|n+1, m\rangle \tag{15}\\
& f^{\dagger}|n, 1\rangle=0 \quad f^{\dagger}|n, 0\rangle=q^{n}|n, 1\rangle \\
& f|n, 0\rangle=0 \quad f|n, 1\rangle=q^{n}|n, 0\rangle
\end{align*}
$$

Equation (5) implies that there exists a ground state $|0,0\rangle$ killed by both a and f and that any excited states can be obtained by applying the raising operators successively to the ground states.

Using the Fock representation, the q-SUSY algebra becomes

$$
\begin{align*}
& \left\{Q, Q^{\dagger}\right\}_{q}=H \\
& {[Q, H]_{q}=\left[H, Q^{\dagger}\right]_{q}=0} \tag{16}\\
& Q^{2}=\left(Q^{\dagger}\right)^{2}=0
\end{align*}
$$

where the Hamiltonian H is given by

$$
\begin{equation*}
H=q^{-1} a^{\dagger} a+q^{-1}(q-1)\left(a^{\dagger} a\right)^{2}+q^{-2} f^{\dagger} f \tag{17}
\end{equation*}
$$

Here q-brackets are defined as follows:

$$
\begin{aligned}
& {[X, Y]_{q}=q X Y-q^{-1} Y X} \\
& \{X, Y\}_{q}=q X Y+q^{-1} Y X .
\end{aligned}
$$

It is worth noting that the q-analogue of $N=2$ SUSY algebra given in equation (16) is the same as that introduced by Spiridonov [7]. Some of its physical application is given in [7].

This Hamiltonian has two quadratic terms corresponding to the q-bosons and q-fermions which implies the kinetic terms for this system. The second term of the Hamiltonian (17) is more or less unknown to us, but it comes about because of q-deformed SUSY algebra.

Acting the supercharges on the Fock basis of number operators, we have

$$
\begin{array}{ll}
Q|n, 0\rangle=0 & Q|n, 1\rangle=q^{n / 2} \sqrt{[n+1]}|n+1, \downarrow\rangle \tag{18}\\
Q^{\dagger}|n, 1\rangle=0 & Q^{\dagger}|n, 0\rangle=q^{n / 2} \sqrt{[n]}|n-1, \uparrow\rangle .
\end{array}
$$

The energy eigenvalues for this Hamiltonian become

$$
\begin{align*}
H|n, 1\rangle & =q^{n}[n+1]|n, 1\rangle \\
H|n, 0\rangle & =q^{n+1}[n]|n, 0\rangle . \tag{19}
\end{align*}
$$

Thus, the relation between the Hamiltonian and number operators are given by

$$
\begin{equation*}
H=q^{N}(q[N]+[M]) \tag{20}
\end{equation*}
$$

3. q-SUSY with $s l_{q}(n \mid n)$ covariance

Let us consider the general n case in this section, which implies the system of $n q$-bosons and $n q$-fermions among which there exists $s l_{q}(n \mid n)$ covariance.

If we impose the $s l_{q}(n \mid n)$ covariance for $n q$-bosons and $n q$-fermions, the algebra is given by

$$
\begin{array}{ll}
a_{i} a_{j}=q^{1 / 2} a_{j} a_{i} & (i<j) \\
a_{i} a_{j}^{\dagger}=q^{-1 / 2} a_{j}^{\dagger} a_{i} & (i<j) \\
a_{i} a_{j}^{\dagger}=q^{1 / 2} a_{j}^{\dagger} a_{i} & (i \neq j) \\
a_{i} a_{i}^{\dagger}=1+q a_{i}^{\dagger} a_{i}+(q-1) \sum_{k=1}^{i-1} a_{k}^{\dagger} a_{k} \\
a_{i} f_{j}=\sqrt{q} f_{j} a_{i} & f_{j}^{\dagger} a_{i}^{\dagger}=\sqrt{q} a_{i}^{\dagger} f_{j}^{\dagger} \\
a_{i} f_{j}^{\dagger}=\sqrt{q} f_{j}^{\dagger} a_{i} & f_{j} a_{i}^{\dagger}=\sqrt{q} a_{i}^{\dagger} f_{j} \\
f_{i} f_{j}=-\sqrt{q} f_{j} f_{i} & (i<j) \\
f_{i}^{\dagger} f_{j}^{\dagger}=-q^{-1 / 2} f_{j}^{\dagger} f_{i}^{\dagger} & (i<j) \\
f_{i} f_{j}^{\dagger}=-\sqrt{q} f_{j}^{\dagger} f_{i} & (i \neq j) \\
f_{i} f_{i}^{\dagger}+f_{i}^{\dagger} f_{i}=1+(q-1)\left(\sum_{k=1}^{n} a_{i}^{\dagger} a_{i}+\sum_{k=1}^{i-1} f_{k}^{\dagger} f_{k}\right) \\
f_{k}^{2}=\left(f_{k}^{\dagger}\right)^{2}=0 . &
\end{array}
$$

It can be easily checked that the algebra (21) is covariant under the $s l_{q}(n \mid n)$ transformation of the step operators of q-bosons and q-fermions.

Then, there exist $2 n$ types of supercharges as follows:

$$
\begin{equation*}
Q_{i}=\frac{1}{\sqrt{q}} a_{i}^{\dagger} f_{i} \quad Q_{i}^{\dagger}=\frac{1}{\sqrt{q}} f_{i}^{\dagger} a_{i} \tag{22}
\end{equation*}
$$

where the nilpotency of f_{i} and f_{i}^{\dagger} gives the nilpotency of supercharges

$$
\begin{equation*}
Q_{i}^{2}=\left(Q_{i}^{\dagger}\right)^{2}=0 \tag{23}
\end{equation*}
$$

If we introduce the Fock basis $|\boldsymbol{n}, \boldsymbol{m}\rangle$ for N_{i} and M_{i} as follows:

$$
\begin{align*}
& N_{i}|\boldsymbol{n}, \boldsymbol{m}\rangle=n_{i}|\boldsymbol{n}, \boldsymbol{m}\rangle \\
& M_{i}|\boldsymbol{n}, \boldsymbol{m}\rangle=m_{i}|\boldsymbol{n}, \boldsymbol{m}\rangle \tag{24}
\end{align*} \quad\left(n_{i}=0,1,2, \ldots, m_{i}=0,1\right)
$$

the matrix representation of $a_{i}, a_{i}^{\dagger}, f_{i}$ and f_{i}^{\dagger} is given by

$$
\begin{align*}
& a_{i}|\boldsymbol{n}, \boldsymbol{m}\rangle=\sqrt{q^{\sum_{k=1}^{i-1} n_{k}}\left[n_{i}\right]}\left|\boldsymbol{n}-\boldsymbol{e}_{i}, \boldsymbol{m}\right\rangle \\
& a_{i}^{\dagger}|\boldsymbol{n}, \boldsymbol{m}\rangle=\sqrt{q^{\sum_{k=1}^{i-1} n_{k}}\left[n_{i}+1\right]}\left|\boldsymbol{n}+\boldsymbol{e}_{i}, \boldsymbol{m}\right\rangle \\
& f_{i}|\boldsymbol{n}, \boldsymbol{m}\rangle= \begin{cases}0 & \left(m_{i}=0\right) \\
q^{\frac{1}{2} \sum_{k=1}^{n} n_{k}}\left(-q^{1 / 2}\right)^{\sum_{k=1}^{i-1} m_{k}} m_{i}\left|\boldsymbol{n}, \boldsymbol{m}-\boldsymbol{p}_{i}\right\rangle & \left(m_{i}=1\right)\end{cases} \tag{25}\\
& f_{i}^{\dagger}|\boldsymbol{n}, \boldsymbol{m}\rangle= \begin{cases}q^{\frac{1}{2} \sum_{k=1}^{n} n_{k} n_{k}}\left(-q^{1 / 2}\right)^{\sum_{k=1}^{i-1} m_{k}}\left(1-m_{i}\right)\left|\boldsymbol{n}, \boldsymbol{m}+\boldsymbol{p}_{i}\right\rangle & \left(m_{i}=0\right) \\
0 & \left(m_{i}=1\right)\end{cases}
\end{align*}
$$

where we have used the following abbreviations:

$$
\begin{aligned}
& |\boldsymbol{n}, \boldsymbol{m}\rangle=\left|n_{1}, \ldots, n_{n}, m_{1}, \ldots, m_{n}\right\rangle \\
& \left|\boldsymbol{n} \pm \boldsymbol{e}_{i}, \boldsymbol{m}\right\rangle=\left|n_{1}, \ldots, n_{i-1}, n_{i} \pm 1, n_{i+1}, \ldots, n_{n}, m_{1}, \ldots, m_{n}\right\rangle \\
& \left|\boldsymbol{n}, \boldsymbol{m} \pm \boldsymbol{p}_{i}\right\rangle=\left|n_{1}, \ldots, n_{n}, m_{1}, \ldots, m_{i-1}, m_{i} \pm 1, m_{i+1}, \ldots, m_{n}\right\rangle .
\end{aligned}
$$

Now we construct the $N=2 q$-SUSY algebra for this system. The q-SUSY algebra with $s l_{q}(n \mid n)$ covariance is given by

$$
\begin{array}{ll}
\left\{Q_{i}, Q_{j}\right\}=0 & \\
\left\{Q_{i}, Q_{j}\right\}_{q}=H_{i} & \\
\left\{Q_{i}, Q_{j}^{\dagger}\right\}_{\sqrt{q}}=0 & (i<j) \tag{26}\\
{\left[Q_{i}, H_{i}\right]_{q}=0} & \\
{\left[Q_{j}, H_{i}\right]_{\sqrt{q}}} & (i \neq j)
\end{array}
$$

where the sub-Hamiltonians H_{i} are given by

$$
\begin{align*}
H_{i}=q^{-1} a_{i}^{\dagger} a_{i} & +q^{-2} f_{i}^{\dagger} f_{i}+q(q-1) a_{i}^{\dagger} a_{i}\left(\sum_{k=1}^{n} a_{k}^{\dagger} a_{k}+q^{-2} \sum_{k=1}^{i-1} f_{k}^{\dagger} f_{k}\right) \\
& +q^{-2}(q-1) f_{i}^{\dagger} f_{i} \sum_{k=1}^{i-1} a_{k}^{\dagger} a_{k} . \tag{27}
\end{align*}
$$

These sub-Hamiltonians have two quadratic terms corresponding to two q-bosons and two q-fermions which imply the kinetic terms for this system. The remaining terms of the sub-Hamiltonians (27) are more or less unknown to us, but they come about because of the q-deformed SUSY algebra.

4. Conclusion

In this paper I have studied the q-deformed SUSY for q-bosons and q-fermions among which there exists $s l_{q}(n \mid n)$ covariance. In particular, I have discussed the $n=1$ case more explicitly. In contrast to the earlier deformation of $N=2$ SUSY, the q-bosons and q-fermions are not independent but q-commutative in this model, which results from the fact that this system consisting of q-bosons and q-fermions possesses $s l_{q}(n \mid n)$ covariance. Using the q-deformed $N=2$ SUSY with $s l_{q}(n \mid n)$ covariance, I have discussed the Hamiltonian for these (strange) particles.

Acknowledgments

The author thanks the referees for helpful comments. This paper was supported by the KOSEF (981-0201-003-2).

References

[1] Jimbo M 1985 Lett. Math. Phys. 1063
Jimbo M 1986 Lett. Math. Phys. 11247
[2] Drinfeld V 1986 Proc. Int. Congress of Mathematicians (Berkeley, CA) p 78
[3] Biedenharn L 1989 J. Phys. A: Math. Gen. 22 L873
[4] Macfarlane A 1989 J. Phys. A: Math. Gen. 224581
[5] Parthasarathy R and Viswanathan K 1991 J. Phys. A: Math. Gen. 24613
[6] Witten E 1981 Nucl. Phys. B 185513
[7] Spiridonov V 1992 Mod. Phys. Lett. A 71241
[8] Chung W 1995 Prog. Theor. Phys. 94649
[9] Schmidke W, Vokos S and Zumino B 1990 Z. Phys. C 48249
[10] Soni S 1991 J. Phys. A: Math. Gen. 24 L459
[11] Burdik C and Tomasek R 1992 Lett. Math. Phys. 2697
[12] Casalbuoni R 1976 Nuovo Cimento A 33124
[13] Pusz W and Woronowicz S 1989 Rep. Math. Phys. 27231
[14] Chaichian M, Kulish P and Lukierski J 1991 Phys. Lett. B 26243

